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A simple theoretical analysis has been developed for the force required to pull out an 
inextensible cord, or an array of cords, partly embedded in an elastic block. The analysis 
is based upon Griffith's fracture criterion: that energy supplied by the loading device as 
the cords are pulled out must be greater than the energy required to fracture the cord-  
block interface plus any increase in strain energy of the block itself. The pull-out force 
is obtained in this way as a function of cord diameter, the dimensions of the block, 
Young's modulus of the block material and the fracture energy per unit area of the 
interface. Measurements with brass-plated steel wire cords of various diameters, 
embedded to various depths in rubber blocks of varied dimensions, made of rubber 
having a wide range of Young's modulus, were all found to be in good agreement with 
the theoretical predictions. Moreover, the inferred value of the interfacial fracture energy 
is similar to a directly-measured value for rubber adhering to brass, about 20 kJ m -2. 
The theoretical treatment also predicts that the total pull-out force for an array of n 
cords will increase in proportion to n 1/2, until transverse fracture intervenes. Both the 
proportionality to n 1/2 and the predicted transition to transverse fracture instead of 
cord pull-out have been observed. This broad agreement with the predictions of the 
theory suggests that the main factors governing cord pull-out have been taken into 
accou nt. 

1. Introduction 
The fundamental problem in the fracture analysis 
of composites is to relate the breaking load to the 
dimensions of the assembly, its composition, and 
the properties of the components. Considerable 
success has been achieved along these lines by the 
use of a simple fracture criterion in terms of a 
characteristic energy requirement for failure. This 
energy criterion was first applied to the fracture of 
brittle solids by Griffith [11 and later to tile separ- 
ation of two adhering solids by Rivlin [2], Deryagin 
and Krotova [3], Lindley [41, Ripling e t  al. [5], 
Malyshev and Sagalnik [6], Williams [7], Gent and 
Kinloch [8], Bascom e t  al. [9] and others. Notable 

recent contributions by Kendall [ 10-12] form the 
basis for the present work. 

In the analysis of a complex system, it is first 
necessary to recognize the mechanism of failure. 
Then an energy balance is formulated, in which 
changes in the strain energy of the stressed system 
and the potential energy of the loading device 
are equated to the energy requirements of the 
fracture process itself. This equation constitutes 
the basic criterion for fracture: an assembly will 
fail when, by so doing, enough mechanical energy 
is released to propagate the fracture. 

Cord-rubber composites can fail in a variety 
of ways; by debonding of the components or by 
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Figure I Forces applied to an embedded cord. 
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fracture of either one. In this work one particularly 
important source of failure, associated with cord 
ends, is considered. If the level of adhesion between 
the rubber and the cord is relatively low, then 
debonding will start at the ends of  the cords and 
propagate along them, resulting in cord "pull-out". 
I f  the level of adhesion is sufficiently high, then 
the ends of the cords, which act as sites of high 
stress concentration, may initiate transverse cracks. 
Either process leads to mechanical failure of  the 
cord-rubber  assembly. 

A simple theoretical analysis of both modes of 
failure is developed i n the following for two special 
cases: an isolated cord, and an array of cords 
embedded in a rubber block. It is assumed that 
the central region of the block is placed in a state 
of  simple extension when the cords are subjected 
to tensile forces. This mechanical arrangemenL 
shown schematically in Figs 1 to 3, is quite dif- 
ferent from other cord pull-out geometries where 
the cord passes completely through the block, as 
in ASTM Test D 2229-73 [13], for example. No 
part of  the rubber block is subjected to simple ex. 
tension in such cases. Instead, the rubber is largely 
sheared between the central cord and an external 
clamp or holder, as discussed by Kendall [14]. 
The initial site and mode of propagation of a de- 
bond are not well def'med in such cases. Failure 
initiates at either end of the cord and propagates 
inwards by cracking of the matrix or by a com- 
plex debonding process [14]. In contrast, failure 
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Figure 2 Pull-out of  an array of  cords. 

in the present instance is always initiated at or 
near the cord ends and takes place either by cord 
pull-out or transverse fracture of  the block. The 
corresponding theoretical analyses, developed 
below, are relatively simple and all of the para- 
meters appearing in the theoretical relations can 
be measured independently so that there are no 
adjustable parameters. 

Experimental measurements have been made on 
a variety of cord-rubber assemblies. They are 
compared with the theoretical predictions in later 
parts of the paper. The agreement obtained is 
sufficiently good to suggest that the theoretical 
analysis is basically correct. Attention is then 
drawn to a number of  implications for the design 
of cord-rubber composites. 

2. Theoretical considerations 
2.1. General assumptions 
In the following analysis the cords are assumed to 
be inextensible and the rubber block is assumed to 
follow a linear stress-strain relation in extension, 
with a slope (Young's modulus) denoted by E. 
Although these assumptions are somewhat more 
restrictive than is necessary, and they could well be 
relaxed in a more comprehensive analysis, they 
lead to particularly simple theoretical relationships, 
readily subjected to experimental test. Moreover, 
they are reasonably valid for rubber-cord compo- 
sites where the cords are usually of  steel, glass, or 
other high modulus fibres, and the breaking 
deformation of the composite is rather small. (It is, 
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Figure 3 Test pieces used in pull-out ex- 
periments (a)single cord; (b)array of 
embedded cords. 

of course, assumed in the analysis that the stresses 
set up in the cords are not large enough to break 
them.) 

2.2. T h e  isolated cord:  c o n d i t i o n s  for  cord  
pu l l -ou t  or  ma t r ix  f r ac tu re  

An embedded cord of radius a is shown schemati- 
cally in Fig. 1. The rubber block is shown as 
cylindrical in the figure, although its exact cross- 
sectional shape is immaterial. The essential 
assumption is that most of the block is in a state 
of simple extension under the action of the pull- 
out force F. If  the cross-sectional area of the block 
is A, the corresponding tensile stress is 

o = F/A (1) 

and the strain energy stored in the rubber block is 
then 

W = o~ALo/2E  = F2Lo/2AE, (2) 

where L0 is the initial length of the strained por- 
tion of the block. 

Detachment of rubber from the end of the cord 
is assumed to take place quite easily because of the 
high stress concentration there. Thus the critical 
question is whether, under an increasing force F, 
an enclosed circular crack of radius a will grow 
transversely, resulting in fracture of  the rubber 
matrix, or whether the cord will become debonded 
from the rubber progressively, starting at the cord 
end, untit it is completely pulled out of the block. 

The criterion for fracture of the block will be 
approximated by the Griffith solution for catastro- 
phic growth of a small penny-shaped crack of 
initial radius a when a tensile stress crf is applied to 

the block [ 15 ] : 

of = (TrEGJ3a) 1/2, (3) 

where G e denotes the fracture energy of the 
rubber, i.e., the energy required to tear through 
unit area, and Poisson's ratio has been taken to be 
1/2. This relation assumes that strain energy is 
stored equally above and below the plane of frac- 
ture, whereas, in the present instance, rubber lying 
above the plane of the cord end will be constrained 
by adhesion to the cord and will not be strained as 
highly as rubber below the cord end. If  the strain 
energy in the rubber above the plane of the cord 
end is regarded as negligibly small, then Equation 
3 becomes 

(Tf = (2rrEGe/3a) v2, (4) 

differing from the former expression by a factor of 

This relation was obtained by Mossakovskii and 
Rybka [16, 17] for the detachment of an elastic 
half-space from a rigid substrate when a circular 
debond of radius a is located at the interface. In 
practice, the fracture stress o~ will probably lie 
between these two extreme values. The fracture 
force Ff can thus be represented by 

F~ = krrA2EGJ3a, (5) 

where k is a numerical factor, lying between 1 and 
2. 

The criterion for detachment of  rubber from 
the cord, leading to cord pull-out, may also be de- 
rived from a Griffith-type analysis. When a length 
c of the cord has become debonded, the volume of 
rubber subjected to simple extension is increased 
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by an amount (A -- zra2)c. The total strain energy 
is correspondingly increased by F2 c /2(A -- rra 2 )E. 
However, the potential energy of the loading de- 
vice is decreased by Fce, where e is the tensile 
strain in the detached portion of the block, given 
by F/(A -- rra 2)E. The potential energy decrease is 
therefore exactly twice as large as the increase in 
total strain energy, so that a net loss of mechani- 
cal energy takes place, of  amount F ~ c / 2 ( A -  
7ra2)E. 

The energy expended in the debonding process 
may be expressed as 2zracGa, where G a is the 
energy required to fracture unit area of the 
rubber-cord interface. Thus, debonding will take 
place when the mechanical energy released is 
sufficient to meet the requirements for debonding, 
i.e., when 

F2c/2(A -- rra 2 )E  >1 2rcacG a. (6) 

Thus the pull-out force Fp is given by 

Eg = 4zr(A -- rra 2)aEGa (7) 

or, when the cross-sectional area of  the cord can 
be regarded as small in comparison with that of  
the rubber block, 

F~ ~ 4rrAaEGa. (8) 

There are several interesting features of  this result. 
First, the pull-out force is predicted to be indepen- 
dent of  the embedded length of the cord and the 
overall length of the rubber block. Secondly, it is 
predicted to increase with the cross-sectional area 
A of the block in which the cord is embedded, and 
with the radius a of  the cord. And, ffmally, it is 
predicted to increase with both Young's modulus 
E and detachment energy Ga, as in other Griffith- 
type analyses of  fracture. These various predictions 
are compared with experimental results in a 
subsequent section. 

The question of which type of failure will occur 
in practice is now considered: cord pull-out or 
transverse fracture of the rubber-block. Cord pull- 
out is predicted to occur when the pull-out force, 
Nven by Equation 8, is smaller than the force re- 
quired for transverse fracture of the rubber block, 
given by Equation 5, i.e., when 

k/12 > a2Ga/A Go. (9) 

Thus, even when the interfacial bond strength, 
represented by Ga, is as high as the tear strength of 
the rubber, represented by Go, the cord is pre- 
dicted to pull out of the block if its radius a is less 
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than (kA/12)  1/2, i.e., less than about one-half of 
the radius of  the rubber block, or of an equivalent 
cylinder. Unfortunately, Equation 3 becomes in- 
valid when the dimension of the initial circular 
crack, given by the cord radius, becomes compar- 
able to the radius of the block. Thus the precise 
value of the maximum radius of the cord at which 
cord pull-out will take place instead of transverse 
fracture of  the rubber block is somewhat uncertain. 
Nevertheless, it is clearly a relatively large dimen- 
sion, comparable to the size of the block in which 
the cord is embedded~ and cords having a diameter 
considerably smaller than the effective diameter of  
the rubber block are predicted to undergo pull-out 
under all circumstances. 

2.3. An ar ray  of  cords  
An array of, for example, n cords, each of radius a, 
embedded in a rubber block of cross-sectional area 
A, is subjected to tensile forces tending to pull the 
cords out of the block (Fig. 2). The cords are 
shown arranged in a plane in the figure, but this is 
not an essential feature of the analysis. As before, 
it is assumed that detachment of  rubber from the 
cord ends occurs quite easily, forming a series of 
circular cracks of radius a at the base of the cords. 
The condition for catastrophic transverse growth 
of any one of these cracks will be the same as be- 
fore (Equation 3), where the critical tensile stress 
in the rubber block is given by 

of = nFf /A,  (10) 

where Ff is the fracture force per cord. Thus 
Equation 5 becomes 

F 2 = klrA2EGc/3an 2. (11) 

A criterion for pull-out of the cords may be de- 
duced in the same way as before. The net loss of 
mechanical energy in the system when debonding 
takes place along a length c of each cord becomes 
n2F2c/2(A -- nrra2)E, and the energy expended ha 
debonding becomes 27rnacG a. Thus debonding will 
take place at a pull-out force Fp per cord given by 

F~ = 4rrAaEGa/n (12) 

in place of Equation 8, when the total cross- 
sectional area of the cords is assumed to be small 
in comparison to the cross-sectional area A of the 
block. 

Equation 11 predicts that the total applied force 
required to bring about transverse fracture, nFf, 
will be the same for an array of cords as for a 



single cord. On the other hand, Equation 12 pre- Fp 
diets that the total puU-out force nFp will be larger 
for an array of n cords than for a single cord, by a 
factor n 1/2 . As a result, the condition for pull-out z00 
is less easily met than before. The criterion for 
cord pull-out becomes 

k/12n >a2Ga/AGe (13) 100 

in place of Equation 9. If the bond strength G a is 
equal to the tear strength Ge, and if n is taken as 

0 10, for example, then Equation 13 predicts that the 
radius of each cord must be less than about one- 
seventh of  the block radius (or equivalent radius) 
in order for the cords to be pulled out before the 
block fractures transversely. For a single cord, the 
critical radius was shown previously to be about 
one-half of the block radius. It is therefore clear 
that an array of cords is much less likely to pull 
out than a single cord, even though it has been 
assumed that the cords are far enough apart so 
that the local stress concentrations do not interact. 

3. Experimental details 
3.1. Test pieces 
Two types of test-piece were used in the experi- 
ments. The first, which is similar to that shown in 
Fig. 1, contained two cords located axially (em- 
bedded in opposite ends of a rubber block of 
square cross-section, Fig. 3a [18]). The test-piece 
dimensions were 75 m m x  12 m m x  12 mm and each 
cord was embedded to a depth of 20mm. The 
second test-piece, similar to that shown in Fig. 2, 
contained two arrays of cords embedded in opposite 
faces of a rubber block of rectangular cross-section 
(Fig. 3b). The test-piece dimensions were 75 mm x 
36minx  5ram and the arrays of cords were 
embedded to a depth of 20 ram. The number of 
cords in each array was varied from 1 to t 3. 

Failure was induced in each test-piece by 
gripping the opposing free cord ends in the clamps 
of a tensile testing apparatus and pulling them 
apart until one of the cords or arrays of cords 
pulled out of the block or until the block fractured 
transversely. The former type of failure is termed 
here "adhesive" failure, because the emerging 
cords seemed to be clean and free from adhering 
rubber, from visual inspection. The latter type of 
failure, when a crack started at the embedded cord 
ends and ran at right angles to the cord direction is 
termed here "cohesive" failure. In each case, the 
maximum tensile force required to bring about 
failure was recorded. 

20 40 

DISPLACEMENT (mm) 

Figure 4 Typical force displacement relation for cord 
pull-out. 

A typical pull-out force-displacement relation 
is shown in Fig. 4. Values of Young's modulus for 
the rubber were determined from the slope of the 
initial linear portion or from a separate indentation 
measurement on the rubber block [19]. 

3.2. Materials 
Rubber blocks were made from cis-polyisoprene 
with various amounts of carbon black incorpor- 
ated, and cross-linked by sulphur during a hot- 
moulding process. The cords were placed in the 
mould initially and the rubber block was formed 
and cross-linked in contact with them, so that it 
adhered to the cords quite strongly. By varying the 
amount of carbon black in the rubber compound 
and the degree of cross-linking, the Young's 
modulus of  the blocks was varied from 1.7 to 
16 MPa. 

The cords consisted of  brass-plated steel wire 
cords, as used in tyre manufacture. They were made 
by twisting between 5 and 29 monofilament wires 
together, each wire having a diameter of about 
0.2 turn. The perimeter of  the cord cross-section, 
shown schematically in Fig. 5, was calculated for 
each cord from the filament diameters, assuming 
close packing. 

4. Experimental results and discussion 
4.1. Pull-out forces for a single cord 
As all of the test pieces were made from a single 
elastomer, cross-linked with sulphur in contact 
with the same substrate material, namely, brass- 
coated steel, the fracture energy Ga for the 
rubber-cord interface is likely to be similar in 
magnitude in all cases. Equation 3 then predicts 
that the pull-out force Fp for a given cord will in- 
crease with Young's modulus E of the rubber 
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Figure 5 Sketch showing cord perimeter. 

block, in proportion to E 1/2 . This prediction was 
found to be correct, as shown in Fig. 6, where 
results are plotted for a wide range of values of E. 
Moreover, when the cross-sectional area of  the 
rubber block was varied by a factor of about 4, 
the pull-out forces increased by a factor of about 
2, in accordance with the predicted dependence 
upon the square root of the cross-sectional area 
A (Equation 8). When two different cords were 
used, having effective radii in the ratio 1.7:1, the 
pull-out forces were found to be in the ratio 
1.4:1 (Fig. 7), in reasonable agreement with the 
square-root dependence upon cord radius a pre- 
dicted by Equation 8. 

When the cross-sectional dimensions of  the 
rubber block were increased further, a limiting 
condition was observed when the pull-out force 
no longer continued to increase in proportion to 
the square root of the cross-sectional area but 
rather became independent of  A (Fig. 8). Ap- 
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Figure 7Pull-out force against square root of rubber 
modulus for two values of the effective cord radius: 
A, 0.44 mm; B, 0.76 mm. Cross-sectional area of block = 
144 mm ~ . 

parently, when the cross-sectional dimensions of  
the block become relatively large, the rubber 
between the cord ends can no longer be regarded 
as being in a state of  simple extension under the 
action of the pull-out force. When this basic 
premise of the theory no longer holds, then a 
dependence of the pull-out force upon the square 
root of  the cross-sectional area of the block is no 
longer observed. 

Equation 8 predicts that the pull-out force Fp 
should be independent of the embedment depth of 
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Figure  6 Pull-out force against square root of rubber 
modulus for two values of the test-piece cross-sectional 
area. A, 144mm 2 ; B, 625 mm 2. Effective cord radius = 
1,2 mm. 
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Figure 8 Pull-out force against square root of test-piece 
cross-sectional area for various values of rubber modulus: 
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Figure 9 Pull-out force against cord embedment depth 
(E = 8.35 MPa and a = 0.76 mm). 
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Figure 10 Pull-out force against square root of number n 
of cords embedded (E = 8.35 MPa and a = 1.1 mm). 

the cord. Although this was found to be the case 
for embedment depths of  15 mm or more, lower 
puU-out forces were recorded when the cord was 
embedded for smaller distances than this (Fig. 9). 
It seems probable that the cord embedment depth 
should be considerably greater than the effective 
diameter o f  the rubber block for the shear de- 
formation of  the rubber surrounding the cord to 
be negligibly small, as is assumed in the theoretical 
treatment. 

Thus, except for cords that were not embedded 
to a depth greater than the effective diameter of  
the rubber block or for specimens with a relatively 
large cross-sectional area, having dimensions com- 
parable to the separation between the cord ends, 
the pull-out force has been found to vary with the 
cord radius a, the block cross-sectional area A and 
Young's modulus o f  the rubber E in good agree- 
ment with the predictions of  Equation 8. 

From the experimental data presented in Figs 
6 to 8, the mean value of  the adhesion fracture 
energy G a was calculated by means of  Equation 8 
to be 17 -+ 3 kJ m - : .  This value is in good agree- 
ment with independent measurements o f  G a for 
the same rubber-substrate combination obtained 
from a peeling experiment, namely 20kJ  m -2 
[18].  Thus the mechanics of  cord pull-out appear 
to be well described by the present theory. 

Possible contributions to the pull-out force 
arising from friction between the detached cord 
and the surrounding rubber have been ignored in 
the analysis. Values of  the pull-out force for un- 
bonded cords were found to be quite small, less 
than one-tenth of  those for corresponding bonded 
cords, and it therefore seems appropriate to 
neglect them. However, the frictional contribution 
is expected to increase with the cord embedment 

depth [20, 21] .  It is therefore likely to become 
significant, and eventually dominant, as the depth 
o f  embedment increases beyond the range em- 
ployed here. 

42. Pull-out forces for an array of cords 
and the cohesive--adhesive transition 

Using one particular rubber compound E =  
8.35 MPa, and one particular cord, having an effec- 
tive radius a = 1.1 mm, the pull-out force F~ or 
transverse fracture force Fe was determined as a 
function of  the number of  cords n embedded in a 
parallel array (Fig. 3b). As predicted by Equation 
12, the total pull-out force nFp was found to in- 
crease with n in proportion to n 1/z (Fig. 10) up 
to a value of  n of  7. Above this value, transverse 
fracture of  the rubber block took place, initiated 
by the cord ends, at a total force nF~ that was 
found to be independent of  n (Table I) in agree- 
ment with Equation 11. Thus the way in which the 
pull-out or fracture forces for an array of  cords 
depended upon the number o f  cords in the array is 
in good agreement with the theoretical predictions. 

The critical number  n e of  cords above which 
transverse fracture will occur  and below which 
cord pull-out will occur, can be caluclated from 
Equation 13. For this purpose, the value of the 

T A B L E I Failure force and mode of failure as a function 
of the number of cords embedded 

Number Failure Failure mode 
of cords force (N) 

1 650 
5 1425 
7 1715 

10 1570 
13 1550 

Pull-out of cords 
Pull-out of cords 
Pull-out of cords 

Transverse fracture of rubber 
Transverse fracture of rubber 
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adhesion fracture energy G a is assumed to be equal 

to the cohesive fracture energy G c of the rubber 

matrix, in view of the strong bond obtained be- 

tween rubber and brass-plated steel. The measured 
value of Ga, about 20kJ  m -2 , is, in fact, not much 

smaller than the tear energy of the rubber Ge, 

about 40 kJ m -2 . The numerical factor k was given 

a value of uni ty ,  and appropriate values were 

assigned to a and A of 1.1 mm and 180mm 2, 

respectively. Equation 13 then yields a critical value 
n e of about 12 cords, in reasonable agreement 
with the observed value of 7--10 cords. Thus the 

observed transition to transverse fracture instead 

of cord pull-out, as the number of cords was in- 

creased, is predicted satisfactorily. 
Instances of transverse fracture of the rubber 

block were also noted when single cords of rela- 

tively large diameter were used, especially with 

rather weak rubber compounds. These observations 
are qualitatively in accord with the theoretically 

predicted conditions for a transition from cord 
pull-out to transverse fracture (Equation 9), but  a 

quantitative comparison has not  yet been made. 
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